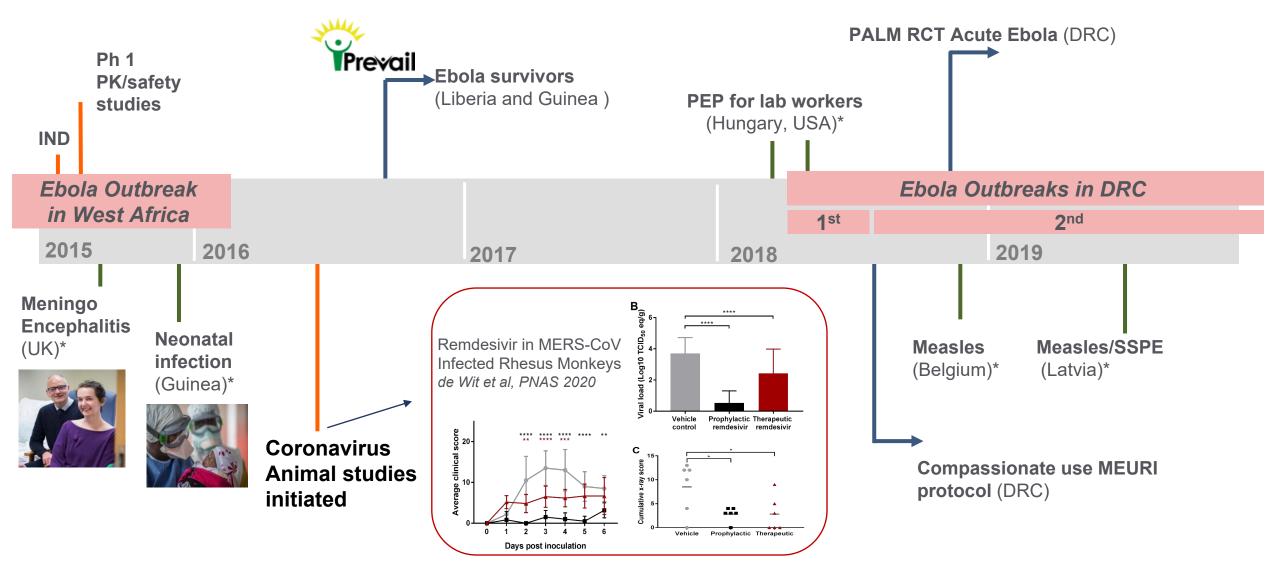


Remdesivir: Clinical Trials and Beyond

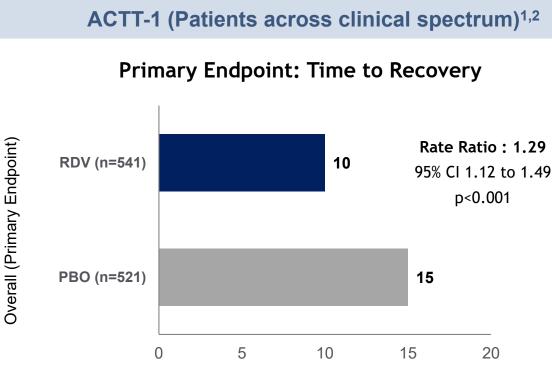

Anu Osinusi MD, MPH Executive Director, Virology Gilead Sciences, Inc

ISIRV-AVG Conference October 6, 2020

Remdesivir Is a Broad-spectrum Antiviral Agent

Clinical Development of Remdesivir (2015-2019)

DRC, Democratic Republic of Congo; EBOV, Ebola virus; IND, investigational new drug; MEURI, monitored emergency use of unregistered and investigational interventions (WHO); PEP, post-exposure prophylaxis; SSPE, subacute sclerosing panencephalitis; * single patient compassionate use.


Peer Reviewed Published Remdesivir Trials For COVID-19

			Hospitalized patients			Placebo or		
Data Source	Ν		Moderate No Oxygen	Severe Requiring Oxygen	• Critical Intubated	Standard of Care	Key Question	Key Findings
ACTT-1	Randomized Double blind Placebo controlled	1063	\checkmark	\checkmark	\checkmark	Р	Is RDV safe and effective treatment	RDV superior to PBO in time to recovery with lower mortality among patients on low-flow O ₂ ¹
China Study	Randomized Double blind Placebo controlled	237 (453 planned)	\checkmark	\checkmark	\checkmark	Р	for COVID-19 patients?	Inconclusive; discontinued due to low enrollment —underpowered at 58% Recovery : 21 d (RDV) vs 23 d (placebo) ; HR 1.23)
SIMPLE Severe	Randomized Open label	400		\checkmark			ls a 5 day treatment course	Similar 5 day/10 day efficacy in severe COVID-19 (non-mechanically ventilated) ³
SIMPLE Moderate	Randomized Open label	600	\checkmark			SoC	as effective and safe as a 10 day course of RDV?	Among hospitalized patients not requiring O ₂ , 5 day treatment superior to SOC ⁴

• There are additional ongoing studies evaluating safety and efficacy of RDV in various populations

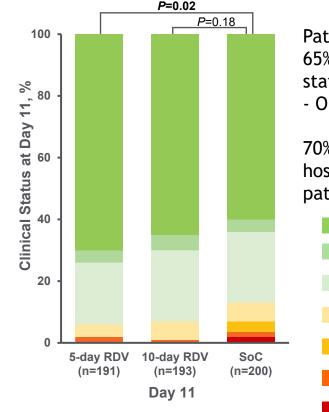
1.Beigel JH et al. NEJM 22 May 2020; 2. Wang Y et al. Lancet Apr 29 2020; 3.Goldman J et al. NEJM 27 May 2020; 4. Spinner CD et al. JAMA

Shorter Time to Recovery and Discharge

Median time to recovery, days

- Shorter time to recovery from 15 days to 10 days
- Larger benefits were observed in patients with severe disease

ACTT-1 (Patients across clinical spectrum)^{1,2}


- Faster time to discharge or NEWS < 2 for 24 hours : 8 days vs 12 days compared to placebo
- Duration of hospitalization: 12 vs 17 days

Time to Discharge or NEWS < 2 for 24 hours Rate Ratio 1.27 **RDV (n=541)** 8 95% CI 1.10 to 1.46 **PBO (n=521)** 12 0 5 10 15 Median time to discharge, days

SIMPLE Moderate Trial

Clinical Status at Day 11

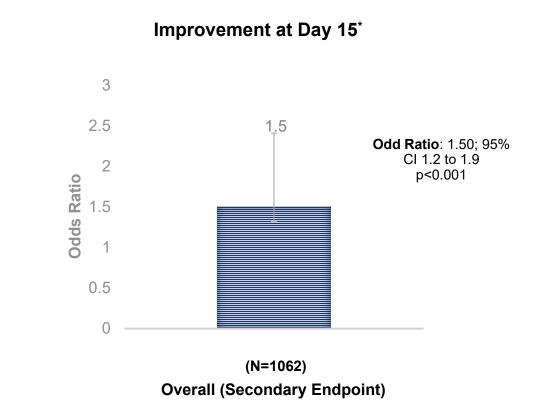
Patients treated with RDV for 5 days were 65% more likely to show improved clinical status at Day 11 compared to SOC - OR, 1.65; 95% CI 1.09-2.48; P = 0.02

70% of patients on 5-day RDV were not hospitalized at Day 11 vs. 60% of SoC patients

Discharged

Hospitalized, not requiring supplemental oxygen or ongoing medical care (other than per-protocol RDV administration)

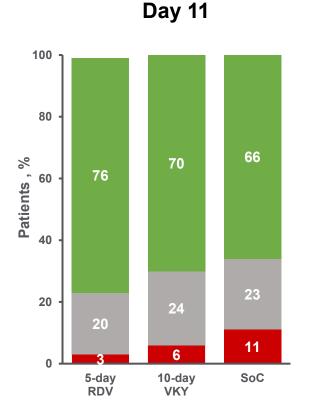
Hospitalized, not requiring supplemental oxygen; requiring ongoing medical care (COVID-19–related or otherwise)


Hospitalized, requiring low-flow supplemental oxygen

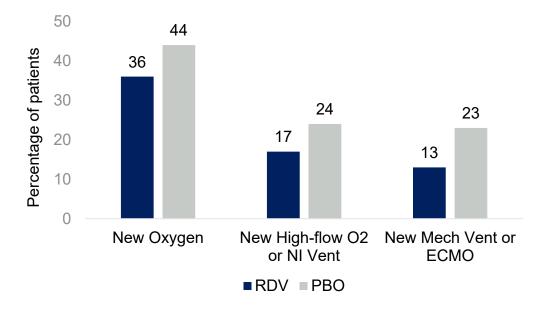
Hospitalized, requiring noninvasive ventilation or high-flow oxygen

Hospitalized, requiring invasive mechanical ventilation or ECMO

Death


ACTT-1 (Patients across clinical spectrum)²

• The odds of improvement in the ordinal scale score were 50% higher in the remdesivir group



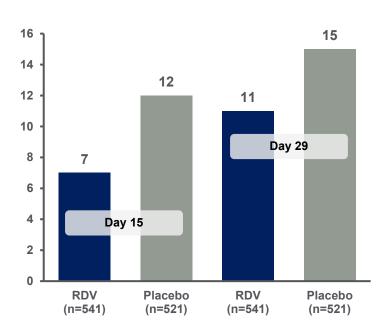
SIMPLE Moderate Trial ¹

Rates of clinical worsening were lower among patients receiving RDV compared to SoC ACTT-1 (Patients across clinical spectrum)^{2,3}

Incidence of new use oxygen, highflow O2, and mech ventilation

• Incidence of new use of oxygen, high-flow oxygen, mechanical ventilation or ECMO were all lower in patients treated with RDV

Worsened


No change

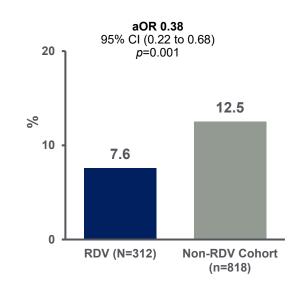
Improved

ACTT-1 (Overall Population)^{1,2}

Mortality by Day 15 and Day 29

• Numerically lower mortality rates observed with RDV

Mortality at Day 15 By Ordinal Score (preliminary data)


	Hazard Ratio (95% Cl)	Remdesivir vs Placebo Rates
Overall, N=1063	0.70 (0.47–1.04)	7.1 vs 11.9
No Oxygen (Ordinal 4), N = 138	0.46 (0.04–5.08)	1.5 vs 2.5
Low flow Oxygen (Ordinal 5), N=435	0.22 (0.08–0.58)	2.4 vs 10.9
Hi-Flow O ₂ or NIV (Ordinal 6), N=193	1.12 (0.53–2.38)	15.2 vs 14.7
Mechanical Ventilation (Ordinal 7), N= 285	1.06 (0.59–1.92)	11.3 vs 14.1

- RDV was associated with a 72% significant reduction in mortality among patients requiring low-flow oxygen in a post-hoc analysis at day 14
- Similar results at day 29 per NIH treatment guidelines

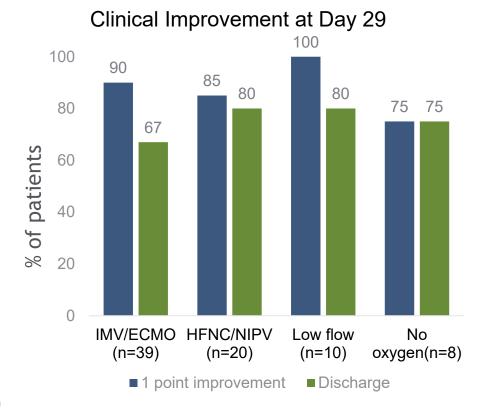
SIMPLE Severe vs. RWD (5807)³

5-day or 10-day RDV versus SoC synthetic arm

Mortality at Day 14

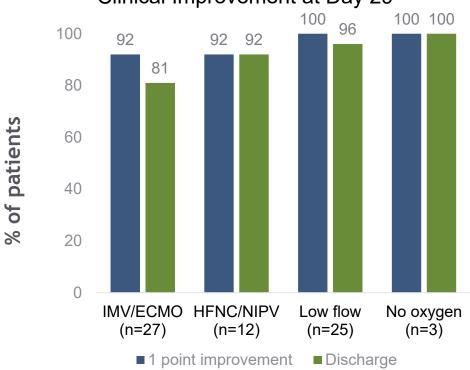
 RDV was associated with 62% reduction in mortality compared to a real-world SoC cohort by Day 14 in a retrospective study

Safety : SAEs Occuring in >1% by Treatment Group


ACTT-1 (Overall Population) ^{1,2}								
Organ Class	Serious AEs >1% in any arm	Remdesivir (N= 541) No (%)	Placebo (N=522) No (%)					
Any System Organ Class	Any	131 (25)	163 (32)					
Denel en dunin en r	Acute kidney injury	7 (1.3)	12 (2.3)					
Renal and urinary	Renal failure	2 (0.4)	5 (1.0)					
Respiratory, Thoracic and	Respiratory failure	35 (6.6)	58 (11.2)					
mediastinal disorders	Acute respiratory failure	8 (1.5)	14 (2.7)					
	Respiratory distress	6 (1.1)	11 (2.1)					
	Acute respiratory distress syndrome	7 (1.3)	5 (1.0)					
Infections and infestations	Septic shock	8 (1.5)	15 (2.9)					
Vascular disorder	Hypotension	4 (0.8)	7 (1.4)					
Cardiac disorders	Cardiac Arrest	10 (1.9)	7 (1.4)					

- Safety was similar in both groups
- Similar patterns observed in SIMPLE Moderate study suggesting that SAEs are driven primarily by underlying disease

Compassionate Use of RDV in Vulnerable Populations


Outcomes in 77 children

- Age range : 1 month to 18 yrs; 47% : < 12 yrs
- 39 (53%) on IMV/ECMO at baseline

Outcomes in 67 pregnant women

- Median Gestational age (weeks): 28 (14 39)
- 67% in the ICU, 40% on IMV/ECMO at baseline

Clinical Improvement at Day 29

10

Remdesivir Combination Trials

- Can combination therapies improve outcomes?

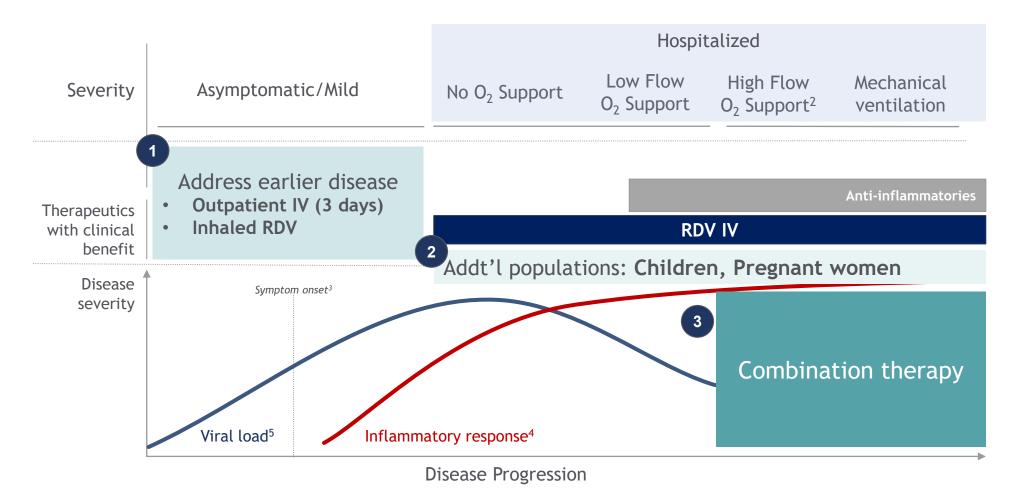
Remdesivir + Immunomodulators

- JAK-1/2 inhibitor (Baricitinib, ACTT-2)
- IL-6 antibody (Tociluzimab, REMDACTA)
- IFN- Beta (IFN, ACTT-3)
- Bradykinin inhibtor (Icatibant, I-SPY)
- Anti-PDE4 (Apremilast, I-SPY)

Remdesivir + Neutralizing Antibodies

- Monoclonal antibody (LY-CoV555, ACTIV3)

Remdesivir + Convalescent Plasma


- hIVIG (Plasma, INSIGHT Study)

Remdesivir + Other Targets

- Anti-CCR-5 (Cenicriviroc, I-SPY)
- VE-PTP inhibitor (Razuprotafib, I-SPY)
- Antiviral (Merimepodib, Sponsored by ViralClear)

https://clinicaltrials.gov/ct2/results?cond=Covid19&term=remdesivir&cntry=&state=&city=&dist=

Remdesivir Next Steps

1. MMWR US (Jan22-May 30, 2020); 2. Hypothesis that most patients receiving High Flow O₂ support would be in the ICU (some may be in general wards); 3. Askur et al. Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19. (2020). Allergy; 4. Zhou et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. (2020). Lancet 395; 5. Vardhana et al. The many faces of the anti-COVID immune response. (2020). *J. Exp. Med.* 217

Acknowledgements

🌵 Inserm

utmb Health

DUNC

UNIVERSITY

COVANCE.

CDO

中国疾病预防控制中心 CHINESE CENTER FOR DISEASE CONTROL AND PREVENTION

