

Betulonic Acid Derivatives Interfering with Coronavirus Replication via the Nsp15 Endoribonuclease

Annelies Stevaert¹, Besir Krasniqi², Benjamin Van Loy¹, Tien Truong Nguyen², Julie Vandeput¹, Dirk Jochmans¹,

Joice Thomas², Arnout Voet², Wim Dehaen², Lieve Naesens^{1*}

¹Rega Institute for Medical Research and ²Department of Chemistry, KU Leuven, Leuven, Belgium.

Introduction

In 2007, betulonic acid was reported by Wen et al. [1] to suppress SARS-CoV replication in cell culture, but no follow-up was thus far conducted. Here we describe the discovery of a structurally related class of **coronavirus inhibitors** acting on **nsp15**, a hexameric protein component of the viral replication-transcription complexes that is endowed with immune evasion-associated endoribonuclease (**EndoU**) activity. SAR exploration of these **1,2,3-triazolo fused betulonic acid derivatives** yielded lead molecule **5h** as a strong inhibitor (antiviral EC₅₀: 0.6 μ M) of **human coronavirus 229E** (HCoV-229E) replication.

5h blocks HCoV-229E replication

(A) Protection against virus-induced cytopathic effect (CPE) in human embryonic lung (HEL) cells.

(B) % Inhibition of virus-induced CPE or % cytotoxicity in HEL cells, both determined by MTS cell viability assay.

(C) Immunofluorescence detection of **viral dsRNA** in HCoV-229E-infected human airway derived 16HBE cells at 24 h p.i. GS-441524, the nucleoside form of remdesivir [2], was included as reference.

5h acts at an early stage in viral RNA synthesis

Time-of-addition profile of 5h and reference compounds K22 (RNA synthesis inhibitor [3]) and bafilomycin (entry inhibitor). Compound addition was delayed until different time points p.i. and viral RNA was quantified at 16 h p.i. 5h acts postentry at an early stage in viral RNA synthesis.

5h binds at nsp15 dimer interface

Docking model of the **5h** binding pocket, at the **interface of two nsp15 dimers**. **5h** interacts with the catalytic H250 in one monomer, and with K60 and T66 in the neighbouring monomer.

Conclusion

Resistance studies combined with *in silico* analyses established that **5h** targets an **nsp15 dimer interface**. Although **5h** exhibits restricted activity towards HCoV-229E, its chemical scaffold should be amenable to **structure-guided modifications** to broaden its **CoV activity spectrum**. Besides, by identifying a unique mechanism to interfere with CoV replication, our findings set the stage to further explore this **nsp15 pocket** for anti-coronavirus **drug design**.

References

Wen et al. 2007. J. Med. Chem. 50, 4087-95.
Sheahan et al. 2017. Sci. Transl. Med. 9, eaal3653.
Lundin et al. 2014. PLoS Pathog. 10, e1004166.
Kindler et al. 2017. PLoS Pathog. 13, e1006195.

Mutations in nsp15 confer resistance to 5h

Viruses carrying **mutations in nsp15** are resistant to **5h** (left panels), but not to **GS-441524** (right panels). **(A) 5h-resistant mutants** obtained by **virus passaging** under 5h carry substitution K60R or T66I in nsp15. **(B) EndoU deficient mutant virus**, carrying substitution H250A_{nsp15} and constructed by reverse genetics [4]. *, P < 0.05; **, P < 0.01; ***, P < 0.001.