*isirv: COVID-19* 6<sup>th</sup> October 2020





# Viral replication kinetics and antibody responses

Malik Peiris The School of Public Health The University of Hong Kong malik@hku.hk



## Viral dynamics and infectiousness of SARS-CoV-2

20

Lancet. 2003 May 24;361(9371):1767-72

Clinical progression and viral load in a community outbreak of coronavirusassociated SARS pneumonia: a prospective study.

Peiris JS<sup>1</sup>, Chu CM, Cheng VC, Chan KS, Hung JE, Poon LL, Law KI, Tang BS, Hon TY, Chan CS, Chan KH, Ng JS, Zheng BJ, Ng WL, Lai RW, Guan Y, Yuen KY; HKU/UCH SARS Study Group.







Peiris et al., Lancet 2003





"- - pattern of patients infected with SARS-CoV-2 resembles that of patients with influenza"

"-- require strategies different from those required for the control of SARS-CoV. "

## **Infectiousness profile of SARS-CoV-2**



Estimated that about 44% of infectiousness occurred in pre-symptomatic stage

He et al Nature Medicine 2020

## Duration of SARS-CoV-2 RNA detection

Reports providing descriptive statistics on duration of SARS-CoV-2 RNA positivity by RT-qPCR with at least 30 subjects and entry in PubMed by 8 April 2020 (n = 9)

| Ref  | Country | Setting    | Severity                                       | Population<br>size | Detection period                                   | Sampling interval®                              | Distribution of outcome in population (days) |                   |         | Time to event                        |                                                                                                                |
|------|---------|------------|------------------------------------------------|--------------------|----------------------------------------------------|-------------------------------------------------|----------------------------------------------|-------------------|---------|--------------------------------------|----------------------------------------------------------------------------------------------------------------|
|      |         |            |                                                |                    |                                                    |                                                 | Median or mean                               | IQR or SD         | Maximum | analysis                             | Antivirais, comments                                                                                           |
| [5]  | China   | Hospital   | 53% moderate,<br>39% severe,<br>8%<br>critical | 137                | Symptom onset to two negative results              | Regular; every<br>other day                     | Median: 20.0                                 | IQR:<br>17.0-24.0 | 37      | None                                 | n=41 lopinavir/ritonavir;<br>analysis restricted to 137/191<br>survivors opens potential for<br>selection bias |
| [7]  | China   | Hospital   | Mild to<br>moderate                            | 56                 | Symptom onset to<br>first negative result          | Irregular                                       | Median: 24.0                                 | IQR:<br>18.0-31.0 | 42      | None                                 | None                                                                                                           |
| [6]  | China   | Hospital   | 94% moderate,<br>6% severe                     | 70                 | Symptom onset to<br>first negative result          | Irregular                                       | Median: 22.0                                 | IQR:<br>19.0-32.0 | No data | None                                 | Focus of study is on<br>re-occurring positives                                                                 |
| [8]  | China   | Hospital   | 74% moderate,<br>25% severe,<br>1% critical    | 120                | Symptom onset to<br>two negative results           | Regular; every<br>other day                     | Median <sub>overall</sub> : 23.0             | IQR:<br>18.0-32.0 | No data | Kaplan–<br>Meier, Cox-<br>regression | n=78 lopinavir/ ritonavir and<br>n=42 no treatment                                                             |
|      |         |            |                                                |                    |                                                    |                                                 | Median <sub>antiviral</sub> : 22.0           | IQR:<br>18.0-29.0 |         |                                      |                                                                                                                |
|      |         |            |                                                |                    |                                                    |                                                 | Median <sub>non-antiviral</sub> :<br>28.5    | IQR:<br>19.5-38.0 |         |                                      |                                                                                                                |
| [9]  | China   | Hospital   | 75% non-ICU<br>25% ICU                         | 32                 | Symptom onset to first negative result             | Irregular                                       | Mean <sub>non-ICU</sub> : 15.67              | SD: 6.68          | No data | None                                 | None                                                                                                           |
|      |         |            |                                                |                    |                                                    |                                                 | Mean <sub>icu</sub> : 22.25                  | SD: 3.62          |         |                                      |                                                                                                                |
| [10] | China   | Hospital   | 28% severe                                     | 113                | Symptom onset to<br>first negative result          | Regular, daily                                  | Median: 17.0                                 | IQR:<br>13.0-22.0 | No data | Kaplan-Meier                         | n=55 umifenovir, n=19<br>ribavirin                                                                             |
| [11] | China   | Hospital   | 83% non-<br>severe; 17%<br>severe              | 59                 | From first positive<br>to first negative<br>result | Regular, daily                                  | Median: 14.0                                 | IQR:<br>10.0–18.0 | 25      | Kaplan–<br>Meier, Cox-<br>regression | All patients ribavirin;<br>variation in definition of<br>detection period may explain<br>lower estimates       |
| [12] | China   | Hospital   | 86% moderate;<br>14% severe                    | 147                | Symptom onset to first negative result             | Regular, every<br>other day                     | Median: 17.0                                 | IQR:<br>12.0-21.0 | 47      | Kaplan–Meier                         | All patients received antiviral<br>treatment, 'most commonly<br>ribavirin and interferon'                      |
| [13] | Korea   | Outpatient | 100% mild                                      | 199                | Diagnosis to two<br>negative results               | Irregular; every<br>other day to once<br>a week | Mean <sub>overall</sub> : 24.5               | SD: 4.8           | No data | none                                 | 53 asymptomatic and 146<br>symptomatic subjects                                                                |

Median ranges 14 – 24.5 days Maximum ranges from 25 to 47 days

#### Factors affecting duration of RNA detection:

#### Omar S et al Eurosurveillance 2020; 25(30):2001292

Mild symptomatic cases managed at home,

Germany



Relevant to differentiating persistence from "re-infection" - CDC 3 months https://www.cdc.gov/coronavirus/2019ncov/hcp/duration-isolation.html

- Type of specimen: sputum > NPS; Peak Temperature; hydrocortisone Rx Wang et al Chest 2020 June; Li TZ et al J Med Virol 2020 Jul
- Asymptomatic vs. matched mild cases: 19 (IQR 15-26) days vs. 14 (IQR 15-26) days (p=0.03) Long et al Nature Med 2020.

# SARS-CoV-2 viral load in different clinical specimens of severe (n=12) and mild (n=11) cases over time

Wang Y et al J Clin Invest 2020



Median age 56 yrs (range 24-82 yrs)

Ct value

Severe cases: viral RNA up to 30-40 days; Mild cases: viral RNA ≤15 days

# **Duration of infectiousness? (Mild COVID-19)**



Perera et al Emerging Infectious Diseases 2020

# Duration of infectiousness, England

#### *Mild/moderate disease, N=324*

A Singanayagam et al Eurosurveillance 2020; 25 (32): pii=2001483





Severe cases / immunocompromised shed infectious virus for longer.

Even in severe cases, 88% culture negative by day 10, 95% negative by day 15

Van Kampen et al medRxiv

# Infectiousness, test "sensitivity" and testing strategy



### Serology







Figure independently created by GSK based on concepts from the references. Data first published in Amanat et al. Nat Med 2020. DOI: 10.1038/s41591-020-0913-5

|               |               | protein |     |           |         |     |
|---------------|---------------|---------|-----|-----------|---------|-----|
| Genus         | Virus         | RBD     | NTD | <b>S2</b> | Whole S | Ν   |
| Beta CoV      | SARS-CoV      | 73%     | 53% | 90%       | 77%     | 90% |
|               | BatCoV RaTG13 | 90%     | 99% | 99%       |         |     |
|               | Pangolin-CoV  | 97%     | 67% | 98%       |         |     |
|               | MERS-CoV      | NS      | NS  | 43%       | 33%     | 49% |
|               | HCoV-HKU1     | NS      | NS  | 41%       | 32%     | 34% |
|               | HCoV-OC43     | NS      | NS  | 42%       | 33%     | 34% |
| Alpha CoV     | HCoV-NL63     | NS      | NS  | 34%       | 28%     | 29% |
|               | HCoV-229E     | NS      | NS  | 35%       | 30%     | 28% |
| *NS: No stati |               |         |     |           |         |     |

Adapted from Okba NMA et al. Emerg Infect Dis. 2020;26(7):1478-1488. doi:10.3201/eid2607.200841

Amanat F et al. Nat Med 2020. DOI: 10.1038/s41591-020-0913-5; Okba NMA et al. Emerg Infect Dis. 2020;26(7):1478-1488. doi:10.3201/eid2607.200841

#### Cohort of 24 patients followed up with multiple serum samples

- First 4 days → no detectable antibody
- >28 days 100% have antibody
- 200 blood donors: No cross reactions
- RBD IgG ELISA ideal screening assay for large scale population sero-epi
  Perera et al Eurosurveillance 2020





# Duration of 50% plaque reduction neutralization test (PRNT) antibodies in COVID-19 convalescence (192 patients; 293 sera)



- Asymptomatic 31; mild 151; severe 13
- Day >90 after onset (n=61); 98% remains PRNT50 pos
- Severe patients: Higher peak, peaks later
- Estimates 372, 416 and 133 days to fall to undetectable in severe, mild and asymptomatic infections
- Age >60 trend to higher antibody titres, adjusted for severity, corticosteroid use



Peiris - Unpublished data

## Surrogate virus neutralization test (sVNT)





- With PRNT90 as gold standard, sVNT has sensitivity of 98.9%, specificity 98.7%, PPV 97.8%, NPV 99.4%
- Overall concordance 98.4%
- Species independent; validated on human, dog, cat, hamster sera.

Tan et al Nature Biotechnol 2020



Landscape of antibody responses to 15 SARS-CoV-2 proteins using luciferase immuno-precipitation

- Immuno-dominance N>ORF8>ORF3b
- ORF8: Not found in seasonal HCoV





Hachem et al Nature Immunol 2020

# Virus epitope profiling of COVID-19



Peptide scan of SARS-CoV-2 proteome Immuno-dominance: N>S>>ORF1>>>>others ORF1 is cross reactive with seasonal CoVs, nondiscriminative





COVID-19 sera: Increased peptide hits to seasonal CoVs. Anamnestic booster responses to prior seasonal CoV memory

Shrock et al Science Sept 2020

# Cross-reactive antibody B cell responses to SARS-CoV-2 spike

- Weak evidence of pre-existing SARS-CoV-2 cross reactive antibody in pre-pandemic sera
- Stronger evidence of pre-existing cross-reactive memory B cells activated following SARS-CoV-2 infection
- Mabs with varying degree of cross reactivity with beta-CoV. These have higher binding constants (KDs) to HKU1 rather than SARS-CoV-2 → suggests initially elicited by HKU1

Memory B cells detected in COVID-19 donors

B HCoV S specificity
SARS-CoV-2 S
HCoV-HKU1 S
SARS-CoV-2 S + NI 63-CoV S



HCoV spike reactivity of MAbs from COVID-19 donors in cell-ELISA



# Summary

- Viral load kinetics of SARS-CoV-2 more like flu than SARS-CoV-1 → explains early transmission from pre/asymptomatic infections → challenge for control
- Viral shedding may be prolonged but infectiousness does not correlate with positive RT-PCR. In mild infections, virus can be isolated in culture in first 8-9 days after onset of illness and correlates with viral load >10<sup>6</sup>/mL and sub-genomic RNA rather that RNA detection per-se.
- Robust neutralizing antibody responses which are long lasted, likely similar to SARS-CoV-2. Older people make at least as good antibody responses as younger adults.
- SARS-CoV-2 infection boosts some memory cross-reactive B-cell epitopes acquired from prior infections with seasonal HCoV.

# Acknowledgements

- Leo LM Poon, Sophie Valkenburg, Daniel Chu, Mahen Perera, Niloufar Kavian, Asmaa Hachem, Eric Lau, Ben Cowling, Kathy Leung, Joe Wu, School of Public Health / Pasteur Research Pole, University of Hong Kong
- Clinical collaboration: Dr Owen Tsang & Dr Mike Kwan Princess Margaret Hospital, Prof David Hui, Prince of Wales Hospital, Dr Susan Chiu, Queen Mary Hospital, Dr Wai-Hung Chan, Queen Elizabeth Hospital, Hong Kong
- Prof Jincun Zhao, State Key Laboratory for Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangdong
- Dr Jie Wu, Guangdong Provincial Centre for Disease Control and Prevention
- Research Funding: CEIRS Program, US NIAID Contract (contract no. HHSN272201400006C); Health and Medical Research Fund - Commissioned Research on the Novel Coronavirus Disease (COVID-19) (reference nos. COVID190126)