
Immunopathogenesis of COVID-19

Peter Openshaw

Imperial College London

What determines disease severity?

Need to study host, pathogen and co-pathogen

MOSAIC

255 patients with influenza-like illness 172 (65%) with PCR-confirmed influenza

45 page booklet (Flu-CIN)

Extensive clinical information

Samples from multiple timepoints

Respiratory, blood and other samples

8000 sample biobank

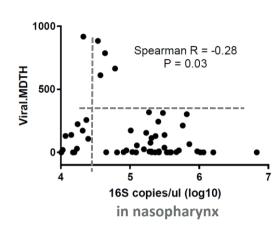
Virology and genomics

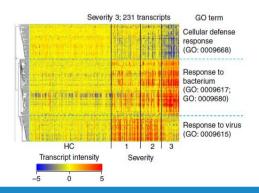
Molecular bacteriology

Mediators and cellular immunology

Transcriptomics

Host genomics

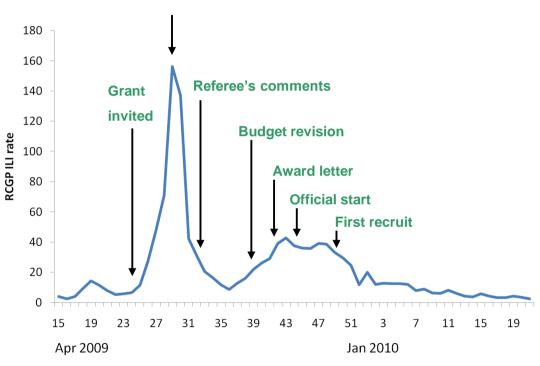

matched healthy controls, ILI controls


A comprehensive study of the causes of severe pandemic influenza

21,000,000 data points

Progression of whole-blood transcriptional signatures from interferon-induced to neutrophilassociated patterns in severe influenza

Jake Dunning^{1,8}, Simon Blankley[©]², Long T. Hoang[©]¹, Mike Cox[©]³, Christine M. Graham², Philip L. James³, Chloe I. Bloom², Damien Chaussabel⁴, Jacques Banchereau[©]⁵, Stephen J. Brett[©]⁶, MOSAIC Investigators⁷, Miriam F. Moffatt³, Anne O'Garra[©]^{2*} and Peter J. M. Openshaw[©]^{1*}



Conclusions:

- 'Viral' signal is <u>only</u> in those with low NPA bacterial load
- 2. 'Bacterial' signal is <u>not</u> seen in those with low NPA bacterial load

MOSAIC Timelines

Week number

wellcome trust

ISARIC preparedness platform

Kenny Baillie

- Developed in the wake of the flu pandemic
- Uses WHO-approved clinical data tool from MOSAIC
- Sleeping platform, launched 2011
- Pre-agreements in place with >200 UK hospitals

Calum Semple

BILL & MELINDA GATES foundation

Calum Semple

CO-CIN and ISARIC-4C

naracterisation

77 933

Number of patients (all tiers)

75 522 Number of patients (Tier 0)

697 Number of patients (Tier 1) 1714 Number of patients (Tier 2)

Tier 0

- Demographic data
- Outcome
- Comorbidities

Tier 1

Single biological sample set:

- Plasma/serum
- Nasal swabs
- Urine + Stool

Tier 2

Serial biological sample sets

https://isaric4c.net/sample_access.html

thebmj doi:10.1136/bmi.m1985

Features of 20133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study

- People of all ages admitted to 208 hospitals in the UK
- Patient data collected and uploaded from start of admission by 2648 frontline NHS clinical and research staff and volunteer medical students

22nd April 2020:

- **20,133 patients** with confirmed SARS-CoV-2
- **34%** of cases in the UK
- Median age: 73 years, Male/Female 60/40
- Outcome: 41% discharged alive

26% died

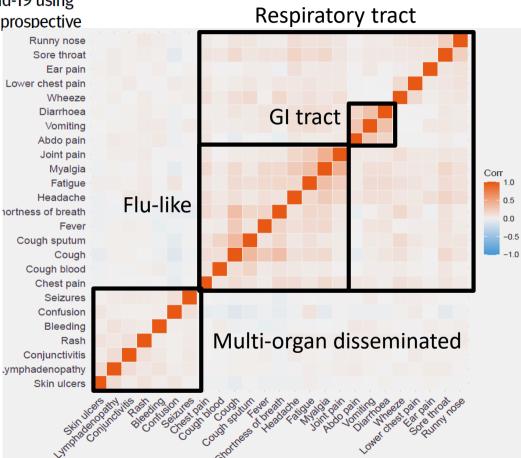
34% still in hospital at reporting date.

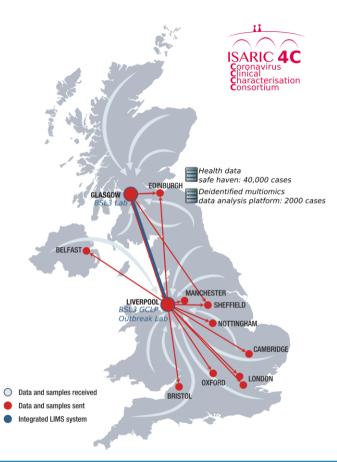
n = 20129

Annemarie Docherty

Calum Semple

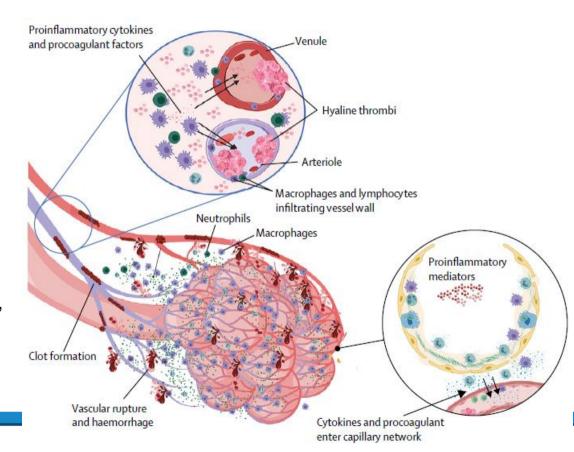
Kenny Baillie Peter Openshaw


Features of 20 133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective


observational cohort study

doi:10.1136/bmj.m1985

http://dx.doi.org/10.1136/bmj.m1985



Potential mechanisms

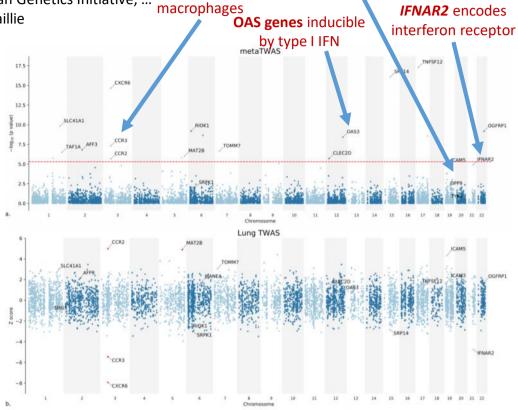
- Diffuse alveolar damage attracts macrophages and neutrophils
- Hyaline deposition, endothelial infection/injury and secretion of inflammatory mediators
- Microthrombi incompletely cleared by fibrinolysis (D-dimer)
- Progressive occlusion of small vessels, right ventricular stress

Genetic mechanisms of critical illness in Covid-19

E Pairo-Castineira, S Clohisey, L Klaric, A Bretherick, K Rawlik... The GenOMICC Investigators, The ISARIC-4C Investigators, The Covid-19 Human Genetics Initiative, ... PJM Openshaw, MG Semple, V Vitart, JF Wilson, J. Kenneth Baillie

Steroids benefit those with respiratory failure, but may harm milder cases. Severity is largely immune-mediated are is strongly heritable

Genome-wide association study, 2244 critically-ill Covid-19 were ancestry-matched to UK Biobank; confirmed in GWAS comparisons with two other population control groups


Found three novel associations:

- 1. Chr19p13.3 (p = 3.98×10^{-12}) dipeptidyl peptidase 9 (DPP9)
- 2. Chr12q24.13 (p = 1.65×10^{-8}) antiviral restriction enzyme activators (OAS1, OAS2, OAS3)
- 3. Chr21q22.1 (p = 4.99×10^{-8}) interferon receptor IFNAR2

Also confirmed 3p21.31 locus (rs73064425, p = 4.77×10^{-30}).

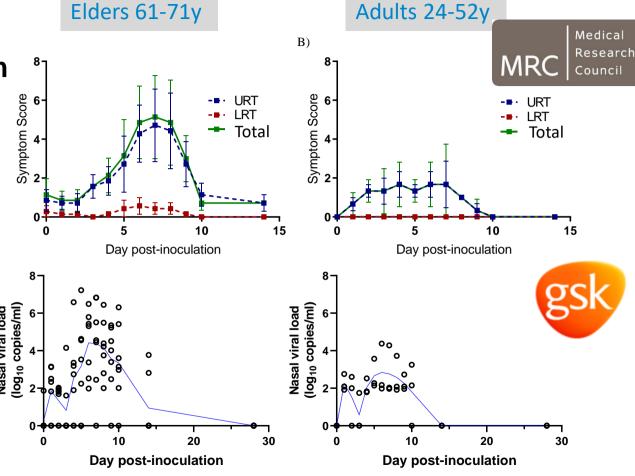
Evidence of a causal link from low expression of IFNAR2 and high expression of TYK2 to life-threatening disease.

Transcriptome-wide association in lung tissue of the monocyte/macrophage chemotactic receptor CCR2 with severe Covid-19

CCR2 attracts

DPP9: protease cleavage CXCL10:

Ag presentation


INFLAMMAGE study, EMINENT consortium

Symptom scores

Effect of age on outcome of RSV human challenge

Viral load (qPCR)

Dr Chris Chiu et al.

Acknowledgements

Imperial College London

Imperial College

- Ryan Thwaites
- Ashley Sevilla Sanchez Uruchurtu
- Matt Siggins
- Brij Patel
- Shiranee Sriskandan
- Chris Chiu
- Stephanie Ascough
- Charlotte-Eve Short
- Graham Taylor
- Graham Cooke
- Anna Randi
- Dan Solanki
- Seema Vekaria
- Emma Smith

ISARIC

- 2648 frontline volunteers
- ISARIC outbreak lab volunteers
- Kenny Baillie
- Calum Semple
- Ewen Harrison
- Annemarie Docherty
- Clark Russell
- Jake Dunning
- Lance Turtle
- Simon Abrams
- Shona Moore
 - Antonia Ho

To the patients and their relatives

