Effect of JAK inhibitor treatment on clinical outcome, lung pathology, and viral load in a mouse model of pathogenic SARS-CoV-2 infection

Victoria K. Baxter, DVM, PhD
Assistant Professor, Department of Pathology and Laboratory Medicine
University of North Carolina at Chapel Hill
October 7, 2020
JAK Inhibitors: Proposed Mechanisms of Action

SARS-CoV-2 entry → Viral replication and spreading → Mild-moderate disease → Severe disease → ARDS

Spinelli et al, Science Immunol, 2020
JAK Inhibitors

• Reversible, competitive inhibitors that binds to the ATP binding site in the catalytic cleft of the kinase domain of JAK

Tofacitinib

• Preferentially inhibits JAK1 and JAK3, with some effect on JAK2

• Orally available, FDA approved for treatment of rheumatoid arthritis and IBS in humans

Baricitinib

• Potent JAK1 and JAK2 inhibitor, with some activity against JAK3 and TYK2

• Orally available, FDA approved for treatment of rheumatoid arthritis in humans

<table>
<thead>
<tr>
<th>Tofacitinib</th>
<th>Baricitinib</th>
<th>Low Dose (Therapeutic Equivalent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 mg/kg PO BID</td>
<td>3 mg/kg PO BID</td>
<td>15 mg/kg PO BID</td>
</tr>
<tr>
<td>15 mg/kg PO BID</td>
<td>10 mg/kg PO BID</td>
<td>30 mg/kg PO BID</td>
</tr>
<tr>
<td>50 mg/kg PO BID</td>
<td>30 mg/kg PO BID</td>
<td>50 mg/kg PO BID</td>
</tr>
<tr>
<td>30 mg/kg PO BID</td>
<td>30 mg/kg PO BID</td>
<td>30 mg/kg PO BID</td>
</tr>
<tr>
<td>3 mg/kg PO BID</td>
<td>3 mg/kg PO BID</td>
<td>3 mg/kg PO BID</td>
</tr>
<tr>
<td>1 mg/kg PO BID</td>
<td>1 mg/kg PO BID</td>
<td>1 mg/kg PO BID</td>
</tr>
<tr>
<td>0.5 mg/kg PO BID</td>
<td>0.5 mg/kg PO BID</td>
<td>0.5 mg/kg PO BID</td>
</tr>
<tr>
<td>0.25 mg/kg PO BID</td>
<td>0.25 mg/kg PO BID</td>
<td>0.25 mg/kg PO BID</td>
</tr>
<tr>
<td>0.125 mg/kg PO BID</td>
<td>0.125 mg/kg PO BID</td>
<td>0.125 mg/kg PO BID</td>
</tr>
<tr>
<td>0.0625 mg/kg PO BID</td>
<td>0.0625 mg/kg PO BID</td>
<td>0.0625 mg/kg PO BID</td>
</tr>
<tr>
<td>0.03125 mg/kg PO BID</td>
<td>0.03125 mg/kg PO BID</td>
<td>0.03125 mg/kg PO BID</td>
</tr>
<tr>
<td>0.015625 mg/kg PO BID</td>
<td>0.015625 mg/kg PO BID</td>
<td>0.015625 mg/kg PO BID</td>
</tr>
<tr>
<td>0.0078125 mg/kg PO BID</td>
<td>0.0078125 mg/kg PO BID</td>
<td>0.0078125 mg/kg PO BID</td>
</tr>
<tr>
<td>0.00390625 mg/kg PO BID</td>
<td>0.00390625 mg/kg PO BID</td>
<td>0.00390625 mg/kg PO BID</td>
</tr>
</tbody>
</table>

Tofacitinib vs. Baricitinib

- **Tofacitinib**
 - Preferentially inhibits JAK1 and JAK3, with some effect on JAK2
 - Orally available, FDA approved for treatment of rheumatoid arthritis and IBS in humans

- **Baricitinib**
 - Potent JAK1 and JAK2 inhibitor, with some activity against JAK3 and TYK2
 - Orally available, FDA approved for treatment of rheumatoid arthritis in humans

Dosage Comparison

- **Low Dose (Therapeutic Equivalent)**: 15 mg/kg PO BID (Tofacitinib) vs. 3 mg/kg PO BID (Baricitinib)
- **Medium Dose**: 50 mg/kg PO BID (Tofacitinib) vs. 30 mg/kg PO BID (Baricitinib)
- **High Dose**: 50 mg/kg PO BID (Tofacitinib) vs. 30 mg/kg PO BID (Baricitinib)
Mouse Adaptation of SARS-CoV-2

Original SARS-CoV-2

Q498Y/P499T SARS-CoV-2-MA

Dinnon et al, Nature 2020
Leist et al, in press

Pathogenic SARS-CoV-MA10
Effect of Tofacitinib Treatment on Clinical Disease

Survival

Body Weight

- 5 = dead/moribund
- 4 = severe hunched posture, minimal spontaneous activity, labored breathing
- 3 = hunched posture, reduced activity
- 2 = scruffy haircoat, mild hunched posture
- 1 = mild scruffy haircoat
- 0 = clinically normal

Vehicle Control

5 mg/kg Tofacitinib

15 mg/kg Tofacitinib

50 mg/kg Tofacitinib

n = 8 mice/group
Effect of Baricitinib Treatment on Clinical Disease

- **Vehicle Control**
- **3 mg/kg Baricitinib**
- **10 mg/kg Baricitinib**
- **30 mg/kg Baricitinib**

Survival
- 5 = dead/moribund
- 4 = severe hunched posture, minimal spontaneous activity, labored breathing
- 3 = hunched posture, reduced activity
- 2 = scruffy haircoat, mild hunched posture
- 1 = mild scruffy haircoat
- 0 = clinically normal

Body Weight
- Graphs show the percent initial body weight over days post infection for different doses of Baricitinib.

n = 16 mice/group
Effect of JAK Inhibitor Treatment on Lung Pathology

Prophylactic Treatment

ATS Acute Lung Injury Score

Vehicle Control Tofacitinib Baricitinib

3 DPI 4 DPI

Diffuse Alveolar Damage Score

Vehicle Control Tofacitinib Baricitinib

3 DPI 4 DPI

Therapeutic Treatment

ATS Acute Lung Injury Score

Vehicle Control Tofacitinib Baricitinib

3 DPI 5 DPI

Diffuse Alveolar Damage Score

Vehicle Control Tofacitinib Baricitinib

3 DPI 5 DPI
Effect of JAK Inhibitor Treatment on Lung Viral Load

Viral Titers

Tofacitinib

Viral RNA

Baricitinib

Open Symbols = Found Dead
Correlation Between Viral Lung Titers and Clinical Disease & Lung Pathology

- **Clinical Disease**
 - Pearson $r = 0.4328$, $p = 0.0021$
 - Pearson $r = -0.5965$, $p < 0.0001$

- **Lung Pathology**
 - Pearson $r = 0.7366$, $p < 0.0001$
 - Pearson $r = 0.5892$, $p < 0.0001$
Summary of Findings

• Baricitinib treatment exacerbates clinical disease at any dose in a mouse model of pathogenic SARS-CoV-2 infection, while tofacitinib treatment is detrimental primarily at high doses.

• JAK inhibitors at high doses increase SARS-CoV-2-induced lung pathology.

• Baricitinib treatment results in augmented viral replication and impaired viral clearance.

• Worsened clinical disease and increased lung pathology scores correlate with higher lung viral titers.

• Monotherapy with Jak inhibitors in COVID-19 patients may result in enhanced replication of virus, leading to exacerbation or relapse of respiratory disease.
Acknowledgements

Baxter lab
- Liz Anderson
- Dr. Audrey Knight
- Jake Dillard
- Sabian Martinez
- Katia Pressey

Heise lab
- Dr. Mark Heise
- Dr. Sharon Taft Benz
- Emily Madden
- Jenny Loome
- Dr. Sanjay Sarkar

Moorman lab
- Dr. Nat Moorman
- Dr. Wes Sanders

Baric lab
- Dr. Ralph Baric
- Dr. Timothy Sheahan
- Ethan Fritch
- Kenny Dinnon
- Dr. Sarah Leist

Dr. Stephanie Montgomery
- Dr. Marty Ferris

Funding:
- NIH
 - K01 OD026529
 - U19 AI100625
 - U19 AI109680

- UNC
 - Infectious Disease Drug Discovery Program (ID3)
 - Rapidly Emerging Antiviral Drug Development Initiative (READDI)
 - NCTraCS and Emerging Challenges in Biomedical Research COVID Pilot Award
 - SOM Junior Investigator Development Award
 - Department of Pathology and Laboratory Medicine